GCE AS/A level

0977/01

MATHEMATICS - FP1
 Further Pure Mathematics

P.M. TUESDAY, 16 June 2015

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{1}{x^{2}-x}$ from first principles.
2. The transformation T in the plane consists of a reflection in the line $y=x$ followed by a reflection in the line $y=-x$.
(a) Determine the 2×2 matrix which represents T.
(b) Identify the single transformation that is equivalent to T.
3. (a) The complex number z satisfies the equation

$$
2 z-\mathrm{i} \bar{z}=\frac{2+\mathrm{i}}{1-\mathrm{i}}
$$

where \bar{z} denotes the complex conjugate of z. Express z in the form $x+\mathrm{i} y$.
(b) Find the modulus and the argument of the complex number $-20-21$ i.
4. (a) The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 1 \\
1 & 1 & 2
\end{array}\right]
$$

Show that \mathbf{M} is singular.
(b) (i) Find the value of μ for which the following system of equations is consistent.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 5 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
\mu
\end{array}\right]
$$

(ii) For this value of μ, find the general solution to this system of equations.
5. The roots of the cubic equation

$$
x^{3}-4 x^{2}-8 x+k=0
$$

are in geometric progression. Determine the value of k.
6. The matrices \mathbf{A} and \mathbf{B} are given by

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 2 & 4 \\
3 & 3 & 6 \\
2 & 2 & 3
\end{array}\right] ; \mathbf{B}=\left[\begin{array}{rrr}
3 & -2 & 0 \\
-3 & -1 & 6 \\
0 & 2 & -3
\end{array}\right] .
$$

(a) Evaluate the matrix $\mathbf{A B}$.
(b) Hence, or otherwise, find the inverse matrix \mathbf{A}^{-1}.
(c) Hence solve the simultaneous equations

$$
\begin{aligned}
& 3 x+2 y+4 z=14 \\
& 3 x+3 y+6 z=18 \\
& 2 x+2 y+3 z=11
\end{aligned}
$$

7. (a) Express

$$
\frac{2}{n(n+2)}
$$

in partial fractions.
(b) Given that

$$
S_{n}=\sum_{r=1}^{n} \frac{2}{r(r+2)},
$$

obtain an expression for S_{n} in the form

$$
\frac{a n^{2}+b n}{2(n+1)(n+2)},
$$

where a and b are positive integers whose values are to be determined.
8. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

(a) Show that

$$
\mathbf{A}^{2}=2 \mathbf{A}-\mathbf{I},
$$

where \mathbf{I} denotes the 2×2 identity matrix.
(b) Using mathematical induction, prove that

$$
\mathbf{A}^{n}=n \mathbf{A}-(n-1) \mathbf{I}
$$

for all positive integers n.
9. The function f is defined on the domain $(0, \pi)$ by

$$
f(x)=2^{x} \sin x
$$

(a) Obtain an expression for $f^{\prime}(x)$.
(b) Determine the x-coordinate of the stationary point on the graph of f, giving your answer correct to 2 decimal places.
10. The complex number z is represented by the point $P(x, y)$ in the Argand diagram and

$$
|z+3|=k|z-\mathrm{i}|,
$$

where k is a real positive constant.
(a) When $k \neq 1$, the locus of P is a circle. Find, in terms of k,
(i) the equation of the circle,
(ii) the coordinates of the centre of the circle.
(b) (i) Write down the equation of the locus of P when $k=1$.
(ii) Give a geometric interpretation of this locus.

